

Fakultät für Verfahrens- und Systemtechnik und

Fakultät für Elektrotechnik und Informationstechnik

MODULHANDBUCH

für den Masterstudiengang

NACHHALTIGE ENERGIESYSTEME

Stand: 05.06.2018

Inhaltsverzeichnis

Vorbemerkungen1		
1. Pfl	lichtmodule	2
1.1	Elektrische Energieversorgung	2
1.2	Nachhaltigkeit	3
1.3	Regenerative Elektroenergiequellen - Systembetrachtung	4
1.4	Regenerative Energien – Funktion, Komponenten, Werkstoffe	5
1.5	Systeme der Leistungselektronik	6
1.6	Nichttechnische Module	7
1.7	Masterarbeit	8
2. W	ahlpflicht module	9
2.1	Angewandtes Energierecht für Ingenieure	9
2.2	Combustion Engineering	11
2.3	Contracting	13
2.4	Elektrische Antriebe - Elektrische Fahrantriebe	14
2.5	Elektrische Netze I: stationäre Netzberechnung	15
2.6	Elektromobilität	16
2.7	Energiepspeichersysteme	17
2.8	Fluidenergiemaschinen	18
2.9	Fuel Cells	19
2.10	Funktionale Materialien für die Energiespeicherung	20
2.11	Industrial Energy Management	22
2.12	Methoden der Optimierung elektrischer Energieversorgungsnetze	23
2.13	Numerische Strömungsmechanik / Computational Fluid Dynamics	24
2.14	Photovoltaische Energiesysteme	26
2.15	Physik der Solarzelle	27
2.16	Projektseminar Nachhaltigkeit	28
2.17	Sustainability Assessment (LCA) for Biofuels	29
2.18	Thermische Prozesstechnik	31
2.19	Thermoelektrik	32
2.20	Wasser- und Flusskraftwerke	33
2.21	Werkstoffe für energietechnische Anwendungen	34
2.22	Windenergie	2.5

Vorbemerkungen

Der Studiengang Nachhaltige Energiesysteme gliedert sich in einen Pflichtbereich und einen Wahlpflichtbereich.

Der Pflichtbereich beinhaltet die folgenden Module:

•	Elektrische Energieversorgung	5 CP
•	Nachhaltigkeit	5 CP
•	Regenerative Elektroenergiequellen – Systembetrachtung	5 CP
•	Regenerative Energien – Funktion, Komponenten, Werkstoffe	9 CP
•	Systeme der Leistungselektronik	5 CP
•	Nichttechnische Module	6 CP
•	Masterarbeit	30 CP
Summe		65 CP

Im Wahlpflichtbereich sind weitere 25 CP zu erwerben. Hierbei müssen 15 CP in einer der folgenden Spezialisierungsrichtungen erworben werden:

- (Elektro)chemische Energiewandlung und -speicherung (EES)
- Halbleiterbasierte Energiewandlung (HE)
- Strömungsmechanische Energiewandlung (SE)
- Thermische Energiewandlung und -speicherung (TES)

Die verbleibenden 10 CP können aus dem spezialisierungsübergreifenden Angebot (siehe Modulbeschreibungen) und/oder einer anderen Spezialisierungsrichtung erbracht werden.

Damit ergeben sich die für den Studiengang insgesamt zu erbringen Leistungen wie folgt:

Summe		90 CP
•	Wahlpflichtbereich (außerhalb der Spezialisierungsrichtung)	10 CP
•	Wahlpflichtbereich (Spezialisierungsrichtung)	15 CP
•	Pflichtbereich	65 CP

1. Pflichtmodule

1.1 Elektrische Energieversorgung

Studiengang:

Master Nachhaltige Energiesysteme (Pflichtmodul)

Modul:

Elektrische Energieversorgung

Ziele des Moduls (Kompetenzen):

Die Studenten erwerben in diesem Modul Kompetenzen in dem Bereich des Zusammenwirkens primär- und sekundärtechnischer Anlagen sowie in den Grundlagen der Netzplanung. Hierzu gehören insbesondere Netzschutz- und Sternpunkterdungskonzepte. Darüber hinaus erlangen die Studenten Kompetenzen zu neuartigen Betriebsmitteln wie HGÜ, FACTS und supraleitenden Betriebsmitteln sowie zu generellen Prinzipien der Netzregelung.

Inhalt

- Einführung in die Aufgaben der Netzplanung und Netzbetriebsführung
- Einführung in die Hochspannungsgleichstromübertragung
- Lastflusssteuernde Betriebsmittel und Kompensationsanlagen
- Grundlagen der Supraleitung
- Einführung in die Thematiken der Sternpunktbehandlung, Traforegelung und des Netzschutzes

Lehrformen:

Vorlesung, Übung

Voraussetzung für die Teilnahme:

Grundlagen der elektrischen Energietechnik

Arbeitsaufwand:

3 SWS (2 V, 1 Ü),

Selbständiges Arbeiten, Vorlesung nacharbeiten, Übungsaufgaben lösen, Prüfung vorbereiten

Leistungsnachweise/Prüfung/Credits:

Klausur 90 min / 5 CP

Modulverantwortlicher:

Prof. Dr.-Ing. habil. M. Wolter, FEIT

1.2 Nachhaltigkeit

Studiengang:

Master Nachhaltige Energiesysteme (Pflichtmodul)

Modul:

Nachhaltigkeit

Ziele des Moduls (Kompetenzen):

Die Studenten erwerben einen breiten Einblick in die Bedeutung der Nachhaltigkeit von Energiesystemen und die verschiedenen Facetten von Nachhaltigkeit. Sie erkennen ferner die Zusammenhänge zwischen technischen Energiesystemen und deren Effekte auf die Ökologie und das soziale Umfeld sowie die ökonomischen und genehmungstechnischen Randbedingungen. Durch die in der Vorlesung erworbenen Kenntnisse können die Studenten Technologie nachhaltiger entwickeln und gezielt kommunizieren. Zusätzlich wird in einer Team-Projektarbeit eine Energietechnologie detailliert erforscht; die Studenten erlernen hierbei, sich selbständig in ein Gebiet einzuarbeiten, eine aktuelle Themenstellung im Team zu bearbeiten und die Erkenntnisse zu präsentieren. Zusätzlich erhalten Sie Einblick in Forschung und Entwicklung an Energiesystemen.

Inhalt

- Ringvorlesung Nachhaltigkeit mit den Themen: Umweltökonomik, Klimaänderung, Umweltpsychologie, Ökologische Folgen der Landnutzungsänderung, Genehmigungsverfahren
- Wissenschaftliche Projektarbeit in Gruppen mit Vortrag

Lehrformen:

Ringvorlesung (2 SWS) und wissenschaftliche Projektarbeit mit Vortrag (1 SWS)

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

150 Stunden

Leistungsnachweise/Prüfung/Credits:

unbenoteter Leistungsnachweis, 5 CP

Modulverantwortlicher:

Prof. Dr. rer. nat. F. Scheffler, FVST

1.3 Regenerative Elektroenergiequellen - Systembetrachtung

Studiengang:

Master Nachhaltige Energiesysteme (Pflichtmodul)

Modul:

Regenerative Elektroenergiequellen - Systembetrachtung

Ziele des Moduls (Kompetenzen):

Die Studierenden verfügen am Ende des Moduls über Kenntnisse zur elektrischen Energieerzeugung aus regenerativen Quellen und zur Integration der regenerativen Elektroenergiequellen in das gesamte Energiesystem. Die Studierenden sind mit Beendigung des Moduls in der Lage, die qualitativen und quantitativen Auswirkungen der aus verschiedenen erneuerbaren Quellen erzeugten elektrischen Energie auf das Energieversorgungssystem zu erkennen und zu bewerten. Sie lernen die Nutzungsmöglichkeiten der regenerativ verfügbaren Energiepotentiale kennen und können Probleme der verstärkten Netzintegration durch Betrachtung des Gesamtsystems unter Einbeziehung von Energiespeichern und Brennstoffzellen nachvollziehen und beeinflussen. Dies trägt zum Verständnis für so genannte "Smart-Grids" bei.

Inhalt

- Einführung, Energiebegriffe, Elektrische Energiesysteme, Smart Grid
- Grundlagen des regenerativen Energieangebots, Energiebilanz
- Photovoltaische Stromerzeugung
- Stromerzeugung aus Wind
- Stromerzeugung aus Wasserkraft
- Brennstoffzellen
- Elektrische Energiespeicher
- Netzintegration regenerativer Erzeuger
- Netzbetrieb lokaler Energieerzeuger

Lehrformen:

Vorlesung (V), Übung (Ü)

Voraussetzung für die Teilnahme:

Keine

Arbeitsaufwand:

Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung

Selbständiges Arbeiten: Vorlesung nacharbeiten, Übungsaufgaben lösen, Prüfung

vorbereiten

Leistungsnachweise/Prüfung/Credits:

Klausur 90 min. / 5 CP

Modulverantwortlicher:

Prof. Dr.-Ing. habil. M. Wolter, FEIT

1.4 Regenerative Energien – Funktion, Komponenten, Werkstoffe

Studiengang:

Master Nachhaltige Energiesysteme (Pflichtmodul)

Modul:

Regenerative Energien – Funktion, Komponenten, Werkstoffe

Ziele des Moduls (Kompetenzen):

- Überblick über Energiemix, Energieverbrauch, Herkunft von Primärenergie
- grundlegende Begriffe; Aufbau von Energie wandelnden Systemen; Einsparpotentiale

Inhalt

- Grundlegendes, Arten von Energiequellen, Definitionen und Begriffe
- Nutzung von Solarstrahlung, Konzentration von Solarstrahlung
- Planetenenergie
- Geothermie
- Biomasse
- Solarchemie
- Kraft-Wärme-Kopplung von RE-Generatoren
- Anlagenauslegung anhand von ausgewählten Beispielen

Lehrformen:

Vorlesung, Seminar und Praktikum

Voraussetzung für die Teilnahme:

naturwissenschaftliche oder ingenieurtechnische Grundlagenvorlesungen; ggf. erweitert durch Anpassungsveranstaltungen gemäß Studiengangsbeschreibung

Arbeitsaufwand:

120 h (42 h Präsenzzeit VL+ 108 selbständige Arbeit, + Vor- und Nachbereitung) + 20 h Praktikum + Exkursion

Leistungsnachweise/Prüfung/Credits:

Klausur (90 min) / 9 CP

Modulverantwortlicher:

Prof. Dr. rer. nat. M. Scheffler, FMB

Literaturhinweise:

werden in der Einführungsveranstaltung bekanntgegeben

1.5 Systeme der Leistungselektronik

Studiengang:

Master Nachhaltige Energiesysteme (Pflichtmodul)

Modul:

Systeme der Leistungselektronik

Ziele des Moduls (Kompetenzen):

Die Studierenden werden durch das Modul in die Lage versetzt, den Einsatz bekannter leistungselektronischer Schaltungen in komplexen Systemen zu implementieren; aufgrund der Anwendungsbeispiele insbesondere von Systemen zur Versorgung mit aus erneuerbaren Quellen erzeugter elektrischer Energie sowie für Elektrofahrzeuge können die Studierenden die erworbenen Kompetenzen unmittelbar in diesen Bereichen einsetzen und sich darüber hinaus in andere Gebiete einarbeiten. Die Studierenden sind in der Lage, die Funktionsweise der leistungselektronischen Systeme nachzuvollziehen; darüber hinaus können sie entsprechende Systeme anwendungsspezifisch auslegen. Sie sind befähigt, Zusammenhänge zwischen dem behandelten und benachbarten Fachgebieten zu erkennen und gewonnene Erkenntnisse auch interdisziplinär anzuwenden, wie sie sich beispielsweise durch die oben genannten Anwendungsbereiche ergeben.

Inhalt

- Stromversorgungen
- leistungselektronische Systeme für aus erneuerbaren Quellen erzeugte elektrische Energie
 - o Photovoltaik-Anlagen
 - Windenergie-Anlagen
 - o drehzahlvariable Wasserkraft-Anlagen
 - o Brennstoffzellen und Speicher
 - o Hochspannungs-Gleichstrom-Übertragung (HGÜ)
- leistungselektronische Systeme in Fahrzeugen Elektromobilität
 - o elektrische Antriebstechnik
 - Ladegeräte

Lehrformen:

Vorlesung, Übung

Voraussetzung für die Teilnahme:

Grundlagen der Leistungselektronik

Arbeitsaufwand:

3 SWS,

150 h (42 h Präsenzzeit + 108 h selbstständige Arbeit)

Leistungsnachweise/Prüfung/Credits:

Klausur 90 min, 5 CP

Modulverantwortlicher:

Prof. Dr.-Ing. A. Lindemann, FEIT

1.6 Nichttechnische Module

Studiengang:

Master Nachhaltige Energiesysteme (Pflichtmodul)

Modul:

Nichttechnische Module

Ziele des Moduls (Kompetenzen):

siehe Beschreibung des jeweiligen Moduls

Inhalt

siehe Beschreibung des jeweiligen Moduls

Lehrformen:

Vorlesung, Übung

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

Präsenzzeit: 56 Stunden, Selbststudium: 94 Stunden

Leistungsnachweise/Prüfung/Credits:

Leistungsnachweise / 6 CP

Modulverantwortlicher:

siehe Beschreibung des jeweiligen Moduls

Literaturhinweise:

siehe Beschreibung des jeweiligen Moduls

1.7 Masterarbeit

Studiengang:

Master Nachhaltige Energiesysteme (Pflichtmodul)

Modul:

Masterarbeit

Ziele des Moduls (Kompetenzen):

Es soll der Nachweis erbracht werden, dass innerhalb einer vorgegebenen Frist ein Problem selbständig mit wissenschaftlichen Methoden bearbeitet werden kann. Sie haben die Fähigkeit, mögliche Lösungsansätze zu analysieren und kritisch zu bewerten. Sie können ihre Arbeit im Kontext der aktuellen Forschung einordnen.

Inhalt

Themenstellungen zu aktuellen Forschungsvorhaben werden von den Professoren der Fakultäten bekannt gegeben. Die Studierenden können sich ein Thema ihrer Neigung auswählen. Die Ausgabe des Themas ist im Prüfungsamt mit den Namen der Prüfer aktenkundig zu machen. Im Kolloquium haben die Studierenden nachzuweisen, dass sie in der Lage sind, Arbeitsergebnisse aus der selbständigen wissenschaftlichen Bearbeitung in einem Fachgespräch zu verteidigen. Dazu müssen die Ergebnisse in einem Vortrag von max. 15 Minuten dargestellt und diesbezügliche Fragen beantwortet werden.

Lehrformen:

Selbständige Problembearbeitung mit Abschlussarbeit

Voraussetzung für die Teilnahme:

45 CP aus dem Pflicht- und Wahlpflichtbereich

Arbeitsaufwand:

24 Wochen

Leistungsnachweise/Prüfung/Credits:

Masterarbeit mit Kolloquium 30 CP

Modulverantwortlicher:

Prüfungsausschussvorsitzender

2. Wahlpflichtmodule

2.1 Angewandtes Energierecht für Ingenieure

Studiengang:

Master Nachhaltige Energiesysteme (Wahlpflichtmodul; spezialisierungsübergreifend)

Modul:

Angewandtes Energierecht für Ingenieure

Ziele des Moduls (Kompetenzen):

Die Studierenden

- haben ein grundlegendes Verständnis zum aktuellen Energierecht, insbesondere in Bezug auf das Energiewirtschaftliche Dreieck,
- beherrschen Basiskenntnisse zum Verstehen und Anwenden von Rechtsvorschriften auf EU- und Nationalstaatsebene,
- erfassen die politische Umsetzung der Energiemarktliberalisierung und die unterschiedlichen Rechtsebenen von der EU bis zur Kommune,
- haben ein Verständnis zur rechtlichen Grundlage, der Funktionsweise eines liberalisierten Energiemarktes und seiner Akteure, einschließlich Entflechtung und Regulierung der Netzbetreiber,
- erfassen die grundsätzliche politische Zielstellung der Energiewende in Deutschland und deren Umsetzung in das Energierecht, erlernen am Beispiel regenerativer Energien die Grundlagen der Raumordnung, Planung sowie Genehmigung von Energieerzeugungsanlagen.

Inhalt

Einführung

- Das Energiewirtschaftliche Dreieck
- Rechtsgrundlagen und Rechtsebenen
- Klimaschutz und Implikationen auf die Rechtssetzung

Energiemarktliberalisierung

- Energiemarktliberalisierung
- Funktionsweise und Akteure am Energiemarkt
- Entflechtung und Regulierung der Netzbetreiber

Energiewende

- Politische Ziele und Umsetzungsstrategien
- Implikationen auf das Energierecht (u.a. EEG, EEWärmeG, EnEV)

Planung und Genehmigung von Energieerzeugungsanlagen

- Grundlagen der Raumordnung, Planung und Genehmigung, u.a. BauGB
- Beispiele: Windenergie an Land und Biomasse

Lehrformen:

Vorlesung: seminaristischer Unterricht, nachträglich bereitgestellte Präsentationsfolien Übungen: äquivalent durch Seminararbeit durchgeführt

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

3 SWS

24 Std. Präsenz, 30 Std. Seminararbeit, 72 Std. Selbststudium

Leistungsnachweise/Prüfung/Credits:

Benotete Seminararbeit und schriftliche Prüfung, 5 CP

Modulverantwortlicher:

Prof. Dr. rer. nat. F. Scheffler, FVST

Lehrende:

Dr.-Ing. M. Stötzer, Ministerium für Umwelt, Landwirtschaft und Energie des Landes Sachsen-Anhalt

Literaturhinweise:

- 1. Britz, G.; Hellermann, J.; Hermes, G (Hrsg.): EnWG Energiewirtschaftsrecht Kommentar, C.H. Beck
- 2. Ekardt, F; Valentin, F: Das neue Energierecht, Nomos
- 3. Christian Held, Cornelius Wiesner: Energierecht und Energiewirklichkeit, Energie & Management
- 4. Gatz, S: Windenergieanlagen in der Verwaltungs- und Gerichtspraxis, vhw
- 5. Ohms, M.J.: Recht der Erneuerbaren Energien, C.H. Beck
- 6. Maslaton, M: Rechtliche Rahmenbedingungen der Errichtung und des Betriebs von Biomasseanlagen, Verlag für alternatives Energierecht
- 7. Schulz, M (Hrsg.): Handbuch Windenergie, Erich Schmidt Verlag

2.2 Combustion Engineering

Course:

Master Nachhaltige Energiesysteme (Wahlpflichtmodul; Spezialisierungsrichtung TES)

Module:

Combustion Engineering

Objectives and Competence:

The students can conduct energy and mass balances in order to calculate product composition, flame temperature of burners or firing efficiency for heating devices. The student can formulate reaction rates for elementary reactions and identify elementary reactions from global mechanism. They are aware of the techniques to simplify detailed mechanism for specific situations (e.g. lean or rich combustion). The students understand the concept of explosion and flammability, and are able to assess risk related to combustion. They understand the concept of laminar flame propagation that gradients sustained by the chemical reactions permit the necessary heat and mass transport for flame propagation. They can draw qualitatively for a premixed flame, where the flame front is, and the profiles of various quantities (temperature, density, velocity, mass fractions of reactant, intermediate and products). They can estimate the flame height, and they can evaluate the effect of various parameters (pressure, fuel, reactant temperature) on the laminar flame speed. For laminar non-premixed flame, they can draw qualitatively mass fraction and temperature contours, and estimate the length of flame. They grasp the concept of turbulence, and understand the effect of turbulence on the length of turbulent flames whether premixed or non-premixed. They have a basic understanding of the main mechanism involved in the combustion of liquid and solid and fuels. They know the main routes for pollutant formations and available reductive measures. They understand the functioning principles and limitations of the measurement techniques for temperature, velocity, or species concentration for combustion research.

Contents:

- Henomenology and Typology of Combustion
- Thermodynamics of Combustion
- Chemical kinetics
- Ignition
- Laminar flame theory (premixed and non-premixed flame)
- Turbulent Combustion
- Pollutant formations
- Combustion of Liquids and Solids
- Combustion diagnostics

Teaching:

Lectures with tutorials

Requirement for participation:

Thermodynamics, Heat Transfer, Fluid Mechanics, Reaction kinetics

Work load:

3 SWS, Time of attendance: 42 hours, Autonomous work: 78 hours

Examination/Credits:

Written exam 120 min / 5 CP

Responsibility:

Jun.-Prof. Dr. B. Fond, FVST

Literature:

- Documents to be downloaded on e-learning platform
- S. Turns, "An introduction to Combustion: Concepts and Applications" McGraw-Hills, 2011
- J. Warnatz, U. Mass and R.W. Dibble, "Combustion" Springer, 2006

2.3 Contracting

Studiengang:

Master Nachhaltige Energiesysteme (Wahlpflichtmodul; spezialisierungsübergreifend)

Modul:

Contracting

Ziele des Moduls (Kompetenzen):

Die Studierenden erkennen das Contracting als eine intelligente Organisationsform zum Outsourcing von Energie- und Medienversorgung. Anhand von Umsetzungsbeispielen sind sie befähigt, Wirkungsmechanismen sowie für den Erfolg relevante Einflussfaktoren klar zu identifizieren und zu analysieren. Auf dieser Basis können sie Contracting-Projekte entwickeln und umsetzen.

Inhalt

- Geschichtliche Entwicklung, Definition und Formen des Contracting, Wettbewerbssituation und Marktpotentiale von Contracting
- Contracting in einzelnen Wirtschaftssektoren und der Immobilienwirtschaft Rahmenbedingungen, Chancen, Hemmnisse, Risiken
- Entwicklung von Contracting-Projekten; Berechnungsverfahren zum Energiebedarf, Planung, Auslegung und technische Realisationsvarianten von Energieerzeugungsanlagen
- Volks- und betriebswirtschaftliche Aspekte des Contracting; Kalkulation von Contracting-Projekten, Wirtschaftlichkeit, Preisanpassung
- Rechtsrahmen für sowie Aufbau und Inhalt von Contracting-Verträgen; aktuell diskutierte Rechtsfragen im Zusammenhang mit Contracting-Projekten; Contracting im Fokus von Politik und Klimaschutz
- Finanzierungsmodelle und steuerliche Aspekte des Contracting
- Controlling und Risikomanagement im Contracting

Lehrformen:

Vorlesung

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

2 SWS,

Präsenzzeit: 28 Stunden, Selbststudium: 62 Stunden

Leistungsnachweise/Prüfung/Credits:

M/3CP

Modulverantwortlicher:

Prof. Dr.-Ing. habil. E. Tsotsas, FVST

Lehrende:

Dr.-Ing. K. Gerhold, GETEC AG, Magdeburg

Literaturhinweise:

Bemmann, Ulrich; Schädlich, Sylvia (Hrsg.): Contracting Handbuch 2003.

Hack, Martin: Energie-Contracting. Recht und Praxis. München, 2003

Seefeldt, Friedrich; Wasielke, Angelika: Contracting-Potential in ausgewählten Segmenten und Regionen, Prognos AG, Berlin, Basel, 2006

2.4 Elektrische Antriebe - Elektrische Fahrantriebe

Studiengang:

Master Nachhaltige Energiesysteme (Wahlpflichtmodul; Spezialisierungsrichtung EES)

Modul:

Elektrische Antriebe - Elektrische Fahrantriebe

Ziele des Moduls (Kompetenzen):

Die Studierenden werden durch das Modul in die Lage versetzt, die Einsatzmöglichkeiten der elektrischen Maschinen zu bewerten und elektrischen Antriebssysteme grundlegend zu berechnen. Nach Abschluss des Moduls können die Studierenden, die stationären und dynamischen Modelle der einzelnen Bestandteile eines Antriebssystems, sowie dessen Wechselwirkung nachvollziehen. Sie sind befähigt, elektrische Maschinen und einfache Antriebssysteme im Labor zu prüfen.

Inhalt

- Aufgaben, Funktionsgruppen und Struktur der elektrischen Antriebssystemen
- Stationäres und dynamischen Verhalten der Arbeitsmaschinen
- Modell der Gleichstrommaschine
- Drehmomentregelung
- Raumzeigerdarstellung zur Analyse von Drehfeldmaschinen
- Modell der permanenterregten Synchronmaschine
- Vereinfachtes Modell der Asynchronmaschine
- Thermischen Vorgängen
- Wirkungsgrad des Antriebssystems

Lehrformen:

Vorlesung und Übung

Voraussetzung für die Teilnahme:

Allgemeine Elektrotechnik II, Regelungstechnik

Arbeitsaufwand:

150 h (42 h Präsenzzeit + 108 h selbstständige Arbeit)

Präsenzzeiten:

- wöchentliche Vorlesungen 2 SWS
- zweiwöchentliche Übungen 1 SWS

Selbstständiges Arbeiten: Nacharbeiten der Vorlesung, Übungs- und Prüfungsvorbereiten

Leistungsnachweise/Prüfung/Credits:

Klausur 90 min/5 CP

Modulverantwortlicher:

Prof. Dr.-Ing. R. Leidhold, FEIT

Literaturhinweise:

Ulrich Riefenstahl: Elektrische Antriebssysteme: Grundlagen, Komponenten, Regelverfahren, Bewegungssteuerung. 3. Aufl. Vieweg + Teubner Wiesbaden, 2010, ISBN 978-3-8348-1331-2

2.5 Elektrische Netze I: stationäre Netzberechnung

Studiengang:

Master Nachhaltige Energiesysteme (Wahlpflichtmodul; Spezialisierungsrichtungen: HE, SE)

Modul:

Elektrische Netze I: stationäre Netzberechnung

Ziele des Moduls (Kompetenzen):

Die Studenten werden durch den Abschluss des Moduls in die Lage versetzt, die systemischen Zusammenhänge und Verfahren zur statischen Berechnung elektrischer Energieversorgungsnetze zu verstehen bzw. umzusetzen. Sie lernen die dazu notwendigen mathematischen Berechnungsverfahren und die Methoden zur Modellierung elektrischer Betriebsmittel kennen. Der Abschluss des Moduls befähigt die Studenten, die statischen Charakteristika während der Planungsphase und des Betriebs zu verstehen, modellhaft zu beschreiben und zu berechnen.

Inhalt

- Statische Betriebsmittelmodellierung
- Statische Netzberechnungsverfahren
 - o Modale Komponenten
 - o Topologiebeschreibung elektrischer Netze
 - o Leistungsflussberechnung
 - o Kurzschlussstromberechnung
 - Netzzustandsschätzung (State Estimation)
 - o Winkelstabilität
 - o Fehlerberechnung
- Netzberechnung mit MATLAB

Lehrformen:

Vorlesung, Übung

Voraussetzung für die Teilnahme:

Grundlagen der elektrischen Energietechnik

Arbeitsaufwand:

3 SWS (2 V, 1 Ü),

Selbständiges Arbeiten: Vorlesung nacharbeiten, Übungsaufgaben lösen, Prüfung vorhereiten

Leistungsnachweise/Prüfung/Credits:

Klausur 90 min, 5 CP

Modulverantwortlicher:

Prof. Dr.-Ing. habil. M. Wolter, FEIT

2.6 Elektromobilität

Studiengang:

Master Nachhaltige Energiesysteme (Wahlpflichtmodul; Spezialisierungsrichtung EES)

Modul:

Elektromobilität

Ziele des Moduls (Kompetenzen):

Es werden Kenntnisse über die Elektromobilität, deren einzelnen Komponenten, Funktionalität des Gesamtsystems sowie der technischen Umsetzung und damit verbundene Zusammenhänge vermittelt. Das Ziel des Seminars besteht darin, ein vielfältiges und notwendiges Spektrum an Informationen über Einsatz und Nutzung der Elektromobilität zu bekommen und ein übergreifendes technisches Fachwissen aufzubauen. Die Seminare gehen von den physikalisch, technischen Grundlagen zur Mobilität, Energiewandlung und Energiespeicherung bis hin zur Herausforderung einer effizienten Systemintegration in bestehende und zukünftige

Energieversorgungsinfrastrukturen. Schwerpunkte sind die Bereitstellungder Energie zum Fahrbetrieb, Technologien zur Energiewandlung und Übertragung in Elektrofahrzeugen mit Blick auf Wirkungsgradaspekte, bis hin zu Informations- und Kommunikationstechnologien zur Koordination von Fahrzeugflotten und dem intelligenten/gesteuerten Laden und der technischen Realisierung der Netzanbindung der Elektrofahrzeuge unter Berücksichtigung lokaler Energieressourcen. Damit ergibt sich eine Reihe von Verknüpfungen mit anderen Fachgebieten.

Inhalt

- 1. Einführung in die Elektromobilität Technologieübersicht
- 2. Physikalisch, technische Beschreibung von Elektrostraßenfahrzeugen
- 3. Low-Voltage (LV) und High-Voltage (HV) Bordnetzim Elektrostraßenfahrzeug
- 4. Leistungselektronik im Elektrostraßenfahrzeug
- 5. Antriebssysteme für Elektrostraßenfahrzeuge
- 6. Elektrische Energiespeicher im Elektrostraßenfahrzeug
- 7. Elektromobilitätsleitwarte
- 8. Geschäftsmodelle in der Elektromobilität
- 9. Vehicle-to-Grid-Konzepte in Verbindung mit Erneuerbaren Energieressourcen
- 10. Standardisierung im Bereich Energie und IKT für Elektrostraßenfahrzeuge

Lehrformen:

Vorlesung und Übung

Voraussetzung für die Teilnahme:

Grundlagen der Elektrotechnik

Arbeitsaufwand:

Präsenszeit: Vorlesung 2h/Woche, Übung, 2h/jede zweite Woche (2+1) Selbständiges Arbeiten: Vorlesung nacharbeiten, Übungsaufgaben lösen, Prüfung vorbereiten

Leistungsnachweise/Prüfung/Credits:

Mündliche Prüfung ohne Hilfsmittel am Ende des Moduls,5 CP

Modulverantwortlicher:

Prof. Dr.-Ing. habil. M. Wolter, FEIT

Lehrende:

Dr.-Ing. Christoph Wenge

2.7 Energiepspeichersysteme

Studiengang:

Master Nachhaltige Energiesysteme (Wahlpflichtmodul; spezialisierungsübergreifend)

Modul:

Energiespeichersysteme

Ziele des Moduls (Kompetenzen):

Die Studenten werden durch den Abschluss des Moduls in die Lage versetzt, die verschiedenen Verfahren, Einsatzgebiete und Anwendungsmöglichkeiten zur Energiespeicherung zu verstehen bzw. umzusetzen. Sie lernen die dazu notwendigen chemischen, elektro- und systemtechnischen Hintergründe kennen und sind in der Lage Energiespeicher für verschiedene Anwendungen auszulegen. Der Abschluss des Moduls befähigt die Studenten, ein geeignetes Speichersystem für eine spezielle Anwendung zu identifizieren und auszulegen und geeignete Betriebsstrategien zu entwickeln.

Inhalt

- Überblick über Speichertechnologien
- Elektrochemische Energiespeicher, Batteriesystemtechnik, Batteriemodellierung
- Mechanische Speicher
- Sektorenkopplung
- Anwendungen
 - o Dimensionierung, Betrieb und Systemtechnik von Solarspeichersystemen
 - Dimensionierung, Betrieb und Systemtechnik von Energiespeichern in elektrischen Versorgungsnetzen
 - o Energiespeicher in der Elektromobilität

Lehrformen:

Vorlesung, Übung

Voraussetzung für die Teilnahme:

Grundlagen der Elektrotechnik

Arbeitsaufwand:

Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung

Selbständiges Arbeiten: Vorlesung nacharbeiten, Übungsaufgaben lösen, Prüfung

vorbereiten (42 h Präsenzzeit + 108 h selbstständige Arbeit)

Leistungsnachweise/Prüfung/Credits:

Mündliche Prüfung/ 3 SWS / 5 Credit Points = 150 h

Notenskala gemäß Prüfungsordnung

Modulverantwortlicher:

Jun.-Prof. Dr.-Ing. I. Hauer, FEIT

Literaturhinweise:

Sterner, Energiespeicher

Kurzweil, elektrochemische Speicher

Huggins, energystorage

2.8 Fluidenergiemaschinen

Studiengang:

Master Nachhaltige Energiesysteme (Wahlpflichtmodul; Spezialisierungsrichtung SE)

Modul:

Fluidenergiemaschinen

Ziele des Moduls (Kompetenzen):

Nach der Teilnahme an diesem Modul beherrschen die Studenten das grundsätzliche Funktionsprinzip der Fluidenergiemaschinen (FEM) und kennen die charakteristischen Typen (Pumpen, Verdichter, Gebläse, Ventilatoren, Wasserturbinen, Dampfturbinen, Windturbinen) sowie ihre volkswirtschaftliche Bedeutung und die speziellen Einsatzgebiete. Sie kennen das Betriebsverhalten der FEM und sind in der Lage, die Einsatzmöglichkeiten dieser Maschinen zu beurteilen und sie selbständig auszuwählen. Durch Rechenbeispiele in der Übung beherrschen sie insbesondere das Zusammenspiel einer Pumpe und einer Dampfturbine mit der jeweiligen Anlage.

Inhalt

- Aufgabe von Fluidenergiemaschinen, Einteilung der Fluidenergiemaschinen nach verschiedenen Kriterien
- Strömungstechnische und thermodynamische Grundlagen zur Beschreibung der Funktion von Fluidenergiemaschinen
- Änderung der Arbeitsfähigkeit des Fluids beim Durchströmen einer Fluidarbeitsmaschine und einer Fluidkraftmaschine, Energieflussdiagramm, Verluste, Wirkungsgrade
- Energieübertragung im Laufrad einer Fluidenergiemaschine, Ähnlichkeitsgesetze, Kennzahlen
- Aufbau, konstruktive Merkmale und Einsatzgebiete sowie Betriebsverhalten von Fluidarbeitsmaschinen (Pumpen, Verdichter, Gebläse, Ventilator), Grenzleistungsbedingungen
- Aufbau, konstruktive Merkmale und Einsatzgebiete sowie Betriebsverhalten von Fluidkraftmaschinen (Wasser-, Dampf-, Windturbinen), Grenzleistungsbedingungen
- Zusammenwirken von Fluidenergiemaschinen mit Anlagen

Lehrformen:

V.: 2 SWS; Ü.: 1 SWS

Voraussetzung für die Teilnahme:

Strömungstechnik, Thermodynamik, Konstruktionslehre

Arbeitsaufwand:

3 SWS

Präsenzzeit: 42 Stunden, Selbststudium: 108 Stunden

Leistungsnachweise/Prüfung/Credits:

-/M/5CP

Modulverantwortlicher:

Prof. Dr.-Ing. habil. D. Thévenin, FVST

Literaturhinweise:

siehe: http://www.ovgu.de/isut/LSS/Lehre/Vorlesungen/buecher FEM.pdf

2.9 Fuel Cells

Studiengang:

Master Nachhaltige Energiesysteme (Wahlpflichtmodul; Spezialisierungsrichtung EES)

Modul:

Fuel Cells

Ziele des Moduls (Kompetenzen):

The participants understand the principles of electrochemical energy conversion. They are aware of the technical applications and future trends in the area of fuel cells. The participants are able to analyse, design and optimise fuel cell systems and posses basic knowledge in the area of fuel processing.

Inhalt

- 1. Introduction to fuel cells
 - Working principle
 - Types of fuel cells
 - Applications
- 2. Steady-state behaviour of fuel cells
 - Potential field
 - Constitutive relations (Nernst equation, electrochemical reaction kinetics, mass transport)
 - Integral balance equations for mass and energy
 - Current-voltage-curve, efficiencies, design
- 3. Experimental methods in fuel cell research
- 4. Fuels
 - Handling and storage of hydrogen
 - Fuel processing
- 5. Fuel cell systems

Lehrformen:

Lecture and tutorial

Voraussetzung für die Teilnahme:

Basic knowledge on thermodynamics, electrochemistry, reaction engineering and mass transport is advantageous

Arbeitsaufwand:

40 h time of attendance (one-week full-time block seminar):

40 hours (3 SWS), private studies: 78 hours (lit. survey)

Leistungsnachweise/Prüfung/Credits:

Oral exam 60 min / 5 CP

Modulverantwortlicher:

Dr.-Ing. G. Papakonstantinou, MPI Magdeburg; Dr.-Ing. I. Ivanov, MPI Magdeburg

Literaturhinweise:

- Lecture notes, available for download
- Vielstich, W. et al.: Handbook of Fuel Cells, Wiley 2003
- Larminie, J. and Dicks, A.: Fuel Cell Systems Explained, Wiley, 2003
- Haman, C.H. and Vielstich, W.: Electrochemistry, Wiley, 1998
- Bard, A.J. and Faulkner, L.R.: Electrochemical Methods, Wiley, 2001
- Wesselingh, J.A. and Krishna, R.: Mass Transfer in Multi-Component Mixtures, Delft Univ. Press, 2000

2.10 Funktionale Materialien für die Energiespeicherung

Studiengang:

Master Nachhaltige Energiesysteme (Wahlpflichtmodul; Spezialisierungsrichtungen: EES, TES)

Modul:

Funktionale Materialien für die Energiespeicherung

Ziele des Moduls (Kompetenzen):

Die Studierenden können die Einflussfaktoren und wichtigsten Techniken der heutigen Energieversorgung für Deutschland sowie weltweit benennen und analysieren. Sie können die Notwendigkeit für die Entwicklung und den verstärkten Einsatz von Energiespeichern begründen. Die Studierenden sind in der Lage, die unterschiedlichen Prinzipien zur Speicherung thermischer, elektrischer, chemischer und mechanischer Energie zu beschreiben und die möglichen Verfahren bezüglich der materialspezifischen Anforderungen zu werten. Besonderes Augenmerk wird dabei auch auf aktuelle Entwicklungen in der Forschung gelegt.

Inhalt

1. Thermische Energie

- Temperaturbereiche der Energiespeicherung und Temperaturhub zw. Wärmequelle und –bedarf
- sensible, latente, Adsorptions- und Absorptionswärme; Grundlagen
- Unterschied Kurzzeit-, Langzeit- u. Saisonalspeicher
- Materialien: feste Systeme, flüssige Systeme
- Spezifische Anwendungen

2. Elektrische Energie

- Akkumulatoren und Batterien: Übersicht, Arten, Einsatzgebiete
- gravimetrische und volumetrische Speicherdichte
- Standardpotentiale, Abhängigkeit von Temperatur des Systems und Konzentration der Reaktanden
- Nernst-Gleichung für die einzelnen Systeme
- Lade-/Entladekinetik; thermische Belastung; Auslegung
- Bilder existierender Anlagen
- Supercaps: Funktionsweise

3. Chemische Energie

- Wasserstoff, Herstellung über Elektrolyse, Speicherung
- Adam- und Eva-Prozess

4. Druckluft

- Speicherorte und Potentiale
- Funktionsweise

5. Schwungräder

- Langsame, schnelle
- Potentiale, Wirkprinzip

6. Sonstiges z.B. Pumpspeicherwerke

Lehrformen:

Vorlesung, Übungen

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

3 SWS, (2 VL, 1 Ü)

Präsenzzeit: 42 h, Selbststudium 78 h

Leistungsnachweise/Prüfung/Credits:

Klausur 90 min / 5 CP

Modulverantwortlicher:

Prof. Dr. rer. nat. F. Scheffler, FVST

Literaturhinweise:

Energy Storage, R. A. Huggins (Springer Verlag), Erneuerbare Energien und Klimaschutz, Volker Quaschning (Carl Hanser Verlag), Foliensatz zum Download

2.11 Industrial Energy Management

Course:

Master Nachhaltige Energiesysteme (Wahlpflichtmodul; spezialisierungsübergreifend)

Modul:

Industrial Energy Management

Objectives:

This courses discusses the various devices used to convert various sources of chemical energy, atomic or solar energy into electrical or mechanical power. The course focuses on plant design and control, efficiency and pollutant emission. This course applies the competence of the students in Thermodynamics, Heat and Mass Transfer and Combustion to the understanding of modern power plants design. The students are able to estimate the power, energy consumption, environmental impacts of various plants and engines and propose efficiency improvements.

Contents:

- Global data of energy consumption
- Overview of power cycles
- The Rankine cycle and its optimization
- Steam generators
- Coal and Biomass Fired power plants
- Solar-thermal power plants
- Nuclear power plants
- Reciprocating Engines
- Gas turbines.

Teaching:

Lectures with tutorials

Prerequisites:

Thermodynamics, Heat and Mass Transfer, Combustion Engineering (not mandatory but advised)

Workload:

3 SWS

Time of attendance: 42 h, Autonomous work: 78 h

Examination/Credits:

written exam / 4 CP

Responsible lecturer:

Jun.-Prof. Dr. B. Fond, FVST

Literature:

- Handouts and lectures slides to be downloaded on e-learning platform.
- Rogers and Mayhews, Engineering Thermodynamics: Work and Heat Transfer (4th Edition

2.12 Methoden der Optimierung elektrischer Energieversorgungsnetze

Studiengang:

Master Nachhaltige Energiesysteme (Wahlpflichtmodul; spezialisierungsübergreifend)

Modul:

Methoden der Optimierung elektrischer Energieversorgungsnetze

Ziele des Moduls (Kompetenzen):

Die Studenten erwerben in diesem Seminar Kompetenzen im Bereich der Programmierung mit Hilfe des Softwareprogramms MATLAB. Innerhalb des Seminars werden darüber hinaus Kompetenzen im Bereich der Optimierung, Netzberechnung und der grafischen Ausgabe mit MATLAB erworben.

Inhalt

- Kennenlernen des Programms MATLAB
- Einführung in Optimierungsalgorithmen
- Einführung in genetische Algorithmen, Partikelschwarmoptimierung, Fuzzy Logic
- Einführung in Prognosealgorithmen mit Neuronalen Netzen und weiteren Prognosealgorithmen
- Darstellungsmöglichkeiten von Ergebnissen in MATLAB

Lehrformen:

Vorlesung, Übung

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

3 SWS (2 V, 1 Ü)

Selbständiges Arbeiten: Vorlesung nacharbeiten, Übungsaufgaben lösen, Prüfung vorbereiten

Leistungsnachweise/Prüfung/Credits:

Mündliche Prüfung, 5 CP

Modulverantwortlicher:

Prof. Dr.-Ing. habil. M. Wolter, FEIT

2.13 Numerische Strömungsmechanik / Computational Fluid Dynamics

Studiengang:

Master Nachhaltige Energiesysteme (Wahlpflichtmodul; Spezialisierungsrichtung SE)

Modul:

Numerische Strömungsmechanik

Ziele des Moduls (Kompetenzen):

Numerische Strömungssimulationen (im Allgemeinen als *Computational Fluid Dynamics* oder kurz CFD genannt) spielen in vielen modernen industriellen Projekten eine sehr wichtige Rolle. Gute Kenntnisse in den Grundlagen der Strömungsmechanik sind sehr wichtig, aber nicht ausreichend, um CFD selbstständig zu erlernen. Der beste Weg zum Erlernen von CFD ist die so genannte "Learning by Doing"-Methode am Computer. Das ist das Ziel dieses Moduls, in dem die theoretischen Aspekte mit vielen Übungen und mit vielen Beispielen am Computer kombiniert sind.

Die Studenten werden dadurch zu einer selbständigen, effizienten und zielgerichteten Nutzung der numerischen Strömungssimulation für komplexe Strömungsprobleme befähigt. Sie erhalten ebenfalls das Verständnis zur kritischen Überprüfung von CFD-Ergebnissen.

Inhalt

- Einleitung, Organisation der Vorlesung. Geschichte und Bedeutung der CFD.
 Wichtigste Methoden für die Diskretisierung (Finite-Differenzen, Finite-Volumen, Finite-Elemente)
- Fehlerarten, Validierung, Best Practice Guidelines.
- Lineare Gleichungssysteme. Direkte Lösung und ihre Grenzen. Iterative
 Lösungsmethoden, Beispiele und Anwendung. Tridiagonale Systeme. Selbstständige
 Realisierung unter Aufsicht eines Matlab-Scripts für die Lösung einer einfachen
 Strömung in einer 2D-Kavität (Poisson-Gleichung).
- Auswahl der Konvergenzkriterien. Gitterunabhängigkeit.
- Reihenfolge der praktischen CFD: CAD, Gittererzeugung und Lösung. Best Practice (ERCOFTAC) Anweisungen für die CFD. Praktische Verwendung des kommerziellen Programms StarCCM+, um CAD und Gittererzeugung durchzuführen. Erzeugung/Begutachtung von einfachen und komplexen Geometrien, Surfacewrapper. Gitter-Qualität.
- Physikalische Modelle für die Simulation komplexer Strömungen. Bedeutung der zweckmäßigen Auswahl dieser Modelle. Strömungsvisualisierung in StarCCM+. Erste und zweite Ordnung in der Diskretisierung.
- Eigenschaften turbulenter Strömungen und Bedeutung dieser Strömungen.
 Turbulenzmodellierung. Berechnung der turbulenten Strömung an einer plötzlichen
 Querschnittserweiterung. Einsatz der best practice-Anweisungen. Vergleich mit
 experimentellen Ergebnissen. Grenze kommerzieller CFD-Programmen
- Verteilung der Projekte

Lehrformen:

Vorlesung mit Übungen und Computerpraktika

Voraussetzung für die Teilnahme:

Strömungsmechanik

Arbeitsaufwand:

3 SWS

Präsenzzeit: 42 Stunden, Selbststudium: 78 Stunden

Leistungsnachweise/Prüfung/Credits:

-/M/5CP

Modulverantwortlicher:

PD Dr.-Ing. G. Janiga, FVST

Literaturhinweise:

Ferzigerand Peric, Computational Methods for Fluid Dynamics, Springer

2.14 Photovoltaische Energiesysteme

Studiengang:

Master Nachhaltige Energiesysteme (Wahlpflichtmodul; Spezialisierungsrichtung HE)

Modul:

Photovoltaische Energiesysteme

Ziele des Moduls (Kompetenzen):

- Erwerb von grundlegenden Kenntnissen zur Umwandlung von Strahlungsenergie in elektrische Energie
- Erwerb von Kenntnissen über Komponenten, Gestaltung, Funktion und Anwendung von photovoltaischen Energiesystemen
- Erwerb von Fähigkeiten zur Berechnung und Auslegung von Photovoltaikanlagen

Inhalt

- Einführung
- Berechnung der Einstrahlung
- Aufbau und Funktionsweise I
- Aufbau und Funktionsweise II
- Herstellung
- Planung von PV-Anlagen I
- Planung von PV-Anlagen II
- Einsatzmöglichkeiten
- Netzintegration I
- Netzintegration II

Lehrformen:

Vorlesung, Übung

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung

Selbständiges Arbeiten: Vorlesung nacharbeiten, Übungsaufgaben lösen, Prüfung

vorbereiten

Leistungsnachweise/Prüfung/Credits:

Klausur 90 min, 5 CP

Modulverantwortlicher:

Prof. Dr.-Ing. habil. M. Wolter, FEIT

2.15 Physik der Solarzelle

Studiengang:

Master Nachhaltige Energiesysteme (Wahlpflichtmodul; Spezialisierungsrichtung HE)

Modul:

Physik der Solarzelle

Ziele des Moduls (Kompetenzen):

Fachliche Kompetenzen:

Die Absolventinnen und Absolventen erlangen folgende fachliche Kompetenzen:

- 1. Kenntnisse grundlegender Begriffe und Konzepte der Photovoltaik
- 2. Kenntnisse über die Wirkungsweise einkristalliner, polykristalliner und amorpher Si-Solarzellen, Zellen aus Verbindungshalbleitern und von Mehrfachsolarzellen
- 3. Grundkenntnisse über die wesentlichen Herstellungsverfahren

Soziale Kompetenzen:

Die Absolventinnen und Absolventen erwerben die Fähigkeiten, Probleme der Photovoltaik und deren Lösungen kompetent und verständlich darzustellen.

Inhalt

- 1. Einführung / Halbleitereigenschaften
 - Halbleitereigenschaften
 - Generation und Rekombination von Ladungsträgern
 - Metall-Halbleiterkontakt
 - Halbleiter Heterostruktur, Anderson Modell
 - Stromerzeugung belichtete Diode, Gärtner Modell
 - Auswahlkriterien für Solarzellen, Optimierung, Shockley-Queisser Limit
 - wichtige Halbleiter für die Photovoltaik
- 2. Silizium Solarzellen
 - Kristallherstellung, Design von Solarzellen, Solarzellherstellung
 - Degeneration von amorphen Solarzellen
- 3. Mehrfachsolarzellen
 - Konzepte, Wirkungsgrad, Realisierung

Lehrformen:

Vorlesung (2 SWS) und Seminararbeit

Voraussetzung für die Teilnahme:

Kenntnisse in Festkörperphysik vorteilhaft

Arbeitsaufwand:

Vorlesung 28 h, Selbststudium 72 h, Seminararbeit mit Vortrag 50 h

Leistungsnachweise/Prüfung/Credits:

Seminararbeit mit Vortrag, Klausur, 5 CP

Modulverantwortlicher:

Dr. rer. nat. H. Witte, FNW

2.16 Projektseminar Nachhaltigkeit

Studiengang:

Master Nachhaltige Energiesysteme (Wahlpflichtmodul; spezialisierungsübergreifend)

Modul:

Projektseminar Nachhaltigkeit

Ziele des Moduls (Kompetenzen):

Aufbauend auf die Ringvorlesung Nachhaltigkeit, erwerben die Studierenden viertiefte Kenntnisse in diesem Themengebiet. Die Teilnahme an der Ringvorlesung ist hierbei von Vorteil, aber keine zwingende Voraussetzung. Durch Zusammenarbeit in interdisziplinären Studierendengruppen werden gemeinsam Konzepte für Themengebiete wie Energieversorgung, Mobilität, Ernährung und Campus erarbeitet. Dabei bietet das Projekt eine exzellente Plattform, um interdisziplinäre Zusammenarbeit und neue Themengebiete kennen zu lernen.

Inhalt

Wissenschaftliche Projektarbeit in Gruppen mit Vortrag

Lehrformen:

wissenschaftliche Projektarbeit mit Vortrag (4 SWS)

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

120 Stunden

Leistungsnachweise/Prüfung/Credits:

benoteter Leistungsnachweis, 5 CP

Modulverantwortlicher:

Dr. rer. nat. H. Wallis, FNW

2.17 Sustainability Assessment (LCA) for Biofuels

Studiengang:

Master Nachhaltige Energiesysteme (Wahlpflichtmodul; Spezialisierungsrichtung TES)

Module:

Sustainability Assessment (LCA) for Biofuels

Objectives (Skills):

The students will get an overview of the sustainability assessment methodologies. They will learn the theoretical background and the standardized procedures to carry out a life cycle assessment (LCA). The phases (goal and scope, inventory analysis, impact assessment and interpretation and evaluation) in a life cycle assessment (LCA) will be declared in detail. The importance of product system definition and functional unit will be worked out. With the help of examples the students will acquire skills to define the system boundaries, to apply the cut-off rules. Furthermore, the students will learn the principles how to allocate the interventions or expenditures in a case of a multiproduct system and how to use the credit method. The use of flow sheet simulation tools will be taught to quantify the energy and mass flows for chemical production processes. The impact categories will explained and the students will learn to how to select appropriate and relevant impact categories in different types of product systems. The evaluation of the results and the differences between attributional and consequential LCA will be learned.

The thermochemical and biotechnological production processes for renewable fuels and chemicals will be elucidated as case examples for LCA. Beyond the sustainability aspects the students will learn the process limitations and technical challenges for various raw materials (e.g. starch vs. Lignocellulosic platforms). Finally the students learn the principles of an exergy analysis. Commercial LCA programs will be presented and the content discussed.

As another component, the course brings the students the skills of searching and collecting scientific peerreviewed information with the citation on-line database Scopus. They will learn to analyse and critically review the scientific publications, and to report scientific published information appropriately.

Content:

- 1. Sustainability and the principles of sustainable development.
- 2. The overview of Life Cycle Assessment (LCA) and the phases
- 3. Inventory and energy analysis, system boundaries, cut-off rules, allocation rules for multiproduct systems.
- 4. Impact assessment, the input-output related categories,
- 5. Reporting, interpretation, evaluation and critical review. Attributional and consequential LCA.
- 6. Ethanol production processes (starch and sugar and lignocellulosic based platform)
- 7. Thermochemical processes: BTL, biomass gasification, pyrolysis and Fischer-Tropsch
- 8. Algae biomass utilization, transesterification of triglycerides, anaerobic digestion
- 9. Introductiontoexergyanalysis

Teaching:

Lectures and a guided scientific literature search and a preparation of a literature survey.

Prerequisites:

Basic courses of chemistry and chemical engineering (Bachelor level)

Workload:

presence: 28 hours (2 SWS), survey: 14 hours (1 SWS)

Leistungsnachweise/Prüfung/Credits:

writtenexam / 5 CP

ResponsibleLecturer:

Dr. techn. L. Rihko-Struckmann, MPI Magdeburg

Literaturhinweise:

lecture notes (free to download)

2.18 Thermische Prozesstechnik

Studiengang:

Master Nachhaltige Energiesysteme (Wahlpflichtmodul; Spezialisierungsrichtung TES)

Modul:

Thermische Prozesstechnik

Ziele des Moduls (Kompetenzen):

Die Studierenden können die Erwärmungs- und die Abkühlungsvorgänge fester Körper wie Metalle, Keramiken, Baustoffe berechnen. Sie kennen den Mechanismus des Wärmeübergangs durch Strahlung. Sie wissen, wie durch Strahlungsschirme und Sekundärstrahlung der Wärmeübergang beeinflusst werden kann. Sie können für die Erde Energiebilanzen aufstellen. Sie können den Einfluss des Kohlendioxids auf die globale Erwärmung berechnen. Sie können gekoppelte Wärme- und Stofftransportvorgänge unter Verwendung von Gleichgewichtsbeziehungen berechnen. Sie sind damit in der Lage, Prozesse der Hochtemperaturverfahrenstechnik und der Energietechnik thermisch auszulegen.

Inhalt

- Wärmebehandlungsprozesse von Feststoffen, Anwendungsbeispiele, Herstellung von Keramik undMetallen, Temperaturverläufe, Fourier'sche Dgl. mit Grenzbedingungen
- Vereinfachte analytische Lösung für eindimensionale Wärmeleitung, dimensionslose Beschreibung, Beispiele, mehrdimensionale Wärmeleitung, Wärmetransport in halbunendlichen Körpern und bei kurzen Zeiten, Kontakttemperatur
- Wärmeübertragung durch Strahlung, Mechanismus, Intensitäten, Emissionsgrade für feste, flüssige und gasförmige Stoffe, Staub- und Rußstrahlung
- Einstrahlzahlen, Strahlungsaustausch, Strahlungsschirm, Treibhauseffekt, Sekundärstrahlung
- Wärmeströme der Erde, Strahlung der Atmosphäre, Klimamodellierung
- Intensivkühlvorgänge, Tauch-, Film- und Spritzkühlung, Einfluss von Flüssigkeiten, kritische Wärmestromdichten, Leidenfrostproblematik
- Gekoppelte Wärme- und Stofftransportvorgänge, Gleichgewichtsbedingungen an Phasengrenzen, Beispiel Kohlenstoffverbrennung, Kalksteinzersetzung

Lehrformen:

Vorlesung mit Übung und Experimenten

Voraussetzung für die Teilnahme:

Thermodynamik, Wärme- und Stoffübertragung, Strömungstechnik, Physikalische Chemie

Arbeitsaufwand:

3 SWS

Präsenzzeit: 42 Stunden, Selbststudium 78 Stunden

Leistungsnachweise/Prüfung/Credits:

Mündlich / 5 CP

Modulverantwortlicher:

Prof. Dr.-Ing. E. Specht, FVST

Literaturhinweise:

Lehrbuch

Specht: Wärme- und Stoffübertragung in der Thermoprozesstechnik. Vulkan Verlag 2014

2.19 Thermoelektrik

Studiengang:

Master Nachhaltige Energiesysteme (Wahlpflichtmodul; Spezialisierungsrichtung HE)

Modul:

Thermoelektrik

Ziele des Moduls (Kompetenzen):

- Die Studierenden kennen die chemischen und physikalischen Grundlagen des thermoelektrischen Effekts und die prinzipiellen Möglichkeiten der Nutzung dieses Effekts zur Erzeugung von Elektroenergie.
- Sie kennen die grundlegenden Probleme bei der technischen Nutzung dieser Materialien.
- Darauf aufbauend können sie neue Strategien zur Lösung dieser Probleme interpretieren und weiterentwickeln.

Inhalt

- Seebeck-Effekt, Peltier-Effekt, Randbedingungen
- Anwendung von Metallen, Thermoelektrische Spannungsreihe
- Halbleitermaterialien, Dotierung
- Skutterudite, Clathrate und Zinkantimonid
- Perowskite
- Nanostrukturierte Materialien
- Neue Verarbeitungstechnologien
- Systemintegration
- Applikationen

Lehrformen:

Vorlesung, Seminararbeit

Voraussetzung für die Teilnahme:

Grundkenntnisse in Physik und Chemie

Arbeitsaufwand:

2 SWS,

150 h (Präsenzzeit: 28 Stunden, Selbststudium: 62 Stunden, Seminararbeit mit Vortrag: 50 Stunden)

Leistungsnachweise/Prüfung/Credits:

Mündliche Prüfung / 5 CP

Modulverantwortlicher:

Prof. Dr. rer. nat. F. Scheffler, FVST

Literaturhinweise:

- 1. Eigener Foliensatz vom Dokumentenserver OVGU ladbar
- 2. Introduction to Thermoelectricity, H. Julian Goldsmid, Springer-Verlag 2009

2.20 Wasser- und Flusskraftwerke

Studiengang:

Master Nachhaltige Energiesysteme (Wahlpflichtmodul; Spezialisierungsrichtung SE)

Modul:

Wasser- und Flusskraftwerke

Ziele des Moduls (Kompetenzen):

Die Teilnehmer der Lehrveranstaltung lernen Aufbau, Funktion und energiewirtschaftliche Einordnung von Wasser- und Flusskraftwerken kennen. Sie erhalten einen Überblick über die Geschichte und heutige Nutzung von Wasserkraft, sowie die energiewirtschaftlichen und gesetzlichen Rahmenbedingungen zur Wasserkraft in Deutschland und weltweit. Der technische Teil behandelt die physikalisch-technischen Grundlagen der Wasserkraftnutzung, den Aufbau von Laufwasser- und Speicherkraftwerken, sowie die Prinzipien der Nutzung der Meeres- und Flussenergien. Darüber hinaus wird ein aktueller Überblick über Innovationen und internationale Entwicklungen im Bereich der Wasser- und Gezeitenkraftnutzung gegeben.

Inhalt

- Einleitung, Historie und Aufbau von Wasser- und Flusskraftwerken (WKA)
- Ausgeführte Turbinen / Strömungswandler in WKA
- Bauelemente von Wasser- und Flusskraftanlagen
- Hydrodynamische, energetische, physikalische Grundlagen
- Energiearten (Prantl), Energieumwandlungen in WKA
- Typen von konventionellen Wasserkraftwerken
- Laufwasser- und Speicherkraftwerke
- Alternative Wasserkraftwerke
- Gezeitenkraftwerke
- Gesetzliche Rahmenbedingungen für WKA
- Praktische Beispiele von WKA
- Innovationen und Entwicklungen im Bereich von Wasser- und Flusskraftwerken
- Steuerung und Regelung von Wasser- und Flusskraftwerken

Lehrformen:

Vorlesung

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

2 SWS,

150 h (Präsenzzeit: 28 Stunden, Selbststudium: 72 Stunden, Seminararbeit mit Vortrag 50 h)

Leistungsnachweise/Prüfung/Credits:

Mündliche Prüfung, 5 CP

Modulverantwortlicher:

Prof. Dr. rer. nat. F. Scheffler, FVST

Lehrende:

Dipl.-Ing. M. Spiewack, ZPVP - Zentrum für Produkt-, Verfahrens- und Prozessinnovation GmbH, Experimentelle Fabrik Magdeburg

2.21 Werkstoffe für energietechnische Anwendungen

Studiengang:

Master Nachhaltige Energiesysteme (Wahlpflichtmodul; spezialisierungsübergreifend)

Modul:

Werkstoffe für energietechnische Anwendungen

Ziele des Moduls (Kompetenzen):

- Überblick über Werkstoffe für spezielle Anwendungen/mit hohem Anwendungspotential in den(regenerativen) Energietechnologien; Hochtemperaturwerkstoffe in Verbrennungsanlagen, Werkstoffe in Energiespeicheranlagen, energietechnisch relevante Beschichtungen etc.
- Vermittlung von Kenntnissen zu Herstellung, Eigenschaften, Struktur und (potentiellen)Anwendungen

Inhalt

- Werkstoffe für Brennstoffzellen,
- Solarzellen und Solarabsorbern und -reflektoren
- HTSL-Werkstoffe;
- Verbundwerkstoffe in mechanischen Wandlern,
- Werkstoffbeispiele in Gasturbinen
- Werkstoffkonzepte und ausgewählte Probleme in Biogasanlagen

Lehrformen:

Vorlesung + Übung

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

150 h (42 h Präsenzzeit + 108 h selbständige Arbeit)

Leistungsnachweise/Prüfung/Credits:

Klausur 90 min, 5 CP

Modulverantwortlicher:

Prof. Dr. rer. nat. M. Scheffler, FMB

2.22 Windenergie

Studiengang:

Master Nachhaltige Energiesysteme (Wahlpflichtmodul; Spezialisierungsrichtung SE)

Modul:

Windenergie

Ziele des Moduls (Kompetenzen):

- Erwerb von grundlegenden Kenntnissen zur Umwandlung und Nutzung der Windenergie für die Stromerzeugung
- Erwerb von Kenntnissen über Komponenten, Gestaltung, Funktion und Anwendung von Windkraftanlagen
- Erwerb von Fähigkeiten zur Berechnung und Auslegung von Windkraftanlagen

Inhalt

- Grundbegriffe, Potentiale, Rahmenbedingungen
- Physik der Windenergienutzung, grundlegende Konversionsprinzipien
- Auslegung von Windturbinen, Tragflügeltheorie
- Kennfeldberechnung und Teillastverhalten
- Berechnungsverfahren, Leistungskennlinie
- Aufbau von Windkraftanlagen, Anlagenkomponenten, Generatorarten
- Generator-Netz-Kopplung, Netzrückwirkungen
- Systemdienstleistungen
- Wirtschaftlichkeitsbetrachtung

Lehrformen:

Vorlesung, Übung

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

Präsenzzeiten: wöchentliche Vorlesungen 2 SWS, zweiwöchentliche Übungen 1 SWS selbständiges Arbeiten: Vorlesung nacharbeiten, Übungsaufgaben lösen, Prüfung vorbereiten

Leistungsnachweise/Prüfung/Credits:

Mündliche Prüfung, 5 CP

Modulverantwortlicher:

Prof. Dr.-Ing. habil. M. Wolter, FEIT